有人预言,RISC-V或将是继Intel和Arm之后的第三大主流处理器体系。欢迎访问全球首家只专注于RISC-V单片机行业应用的中文网站
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
本帖最后由 皋陶 于 2021-3-6 15:58 编辑
CSR状态控制寄存器,每个hart都有自己的CSR。对于每个hart,可以配置的状态寄存器是4k。CSR寄存器的功能见:E203 CSR寄存器 CSR实现的rtl代码是e203_exu_csr.v,下面我们分析一下代码实现: 输出输入信号如下: - module e203_exu_csr(
- input csr_ena, //csr readwrite enable signal from alu,csr读写使能信号,
- input csr_wr_en, //csr write enable,csr写使能信号
- input csr_rd_en, //csr read enable,csr读使能信号
- input [11:0] csr_idx,//csr address index,csr地址索引
- output tm_stop, //time stop, counterstop[1],输出time counter是否停止
- output core_cgstop,//not is used by isa, 0xbfe, self-defined, core clock gating,核心clock gating设置
- output tcm_cgstop,//not is used by isa, 0xbfe, Stop TCM clock gating, tight coupled memory,tcm 访问clock gating
- output itcm_nohold, //not is used by isa,itcm是否hold上一次的读数据
- output mdv_nob2b, //not is used by isa,是否是两个临接的乘除指令
- output [`E203_XLEN-1:0] read_csr_dat,//read return data from csr,从csr读取的数据
- input [`E203_XLEN-1:0] wbck_csr_dat,//data write back to csr,写数据到csr
- input [`E203_HART_ID_W-1:0] core_mhartid, //point mhartid, if read mhartid register, return this value,e203只有一个核,所以为0
- //mip register
- input ext_irq_r,//external interrupt,是否是外部中断请求
- input sft_irq_r,//software interrupt 是否是软件中断请求
- input tmr_irq_r,//time interrupt, 是否是计时器中断请求
- output status_mie_r,//输出状态寄存器的mie值,表示是否使能全局中断
- //interrupt enble value for mie
- output mtie_r, //机器模式定时器中断是否屏蔽, mie.mtie位
- output msie_r, //机器方式软件中断是否屏蔽,
- output meie_r, //机器模式外部中断是否屏蔽, mie.meie位//0x7b0 Debug Control and Status //0x7b1 Debug PC //0x7b2 Debug Scratch Register //0x7a0 Trigger selection register
- output wr_dcsr_ena , //debug 模式下,写csr 使能
- output wr_dpc_ena , //debug模式下,pc写使能
- output wr_dscratch_ena, //debug模式下,scratch写使能
- input [`E203_XLEN-1:0] dcsr_r , //输入dcsr值
- input [`E203_PC_SIZE-1:0] dpc_r , //输入dpc值
- input [`E203_XLEN-1:0] dscratch_r, //输入dscratch值
- output [`E203_XLEN-1:0] wr_csr_nxt , //=wbck_csr_dat;
- input dbg_mode, //debug模式
- input dbg_stopcycle, //如果在debug模式,且置位这个信号,则停止perf counter计数
- output u_mode, //输出当前的模式,如果为那个模式,则这个信号置1
- output s_mode,
- output h_mode,
- output m_mode,
- input [`E203_ADDR_SIZE-1:0] cmt_badaddr, //输入异常指令或者异常访存地址到mtval/mbadaddr
- input cmt_badaddr_ena, //badaddr 使能信号
- input [`E203_PC_SIZE-1:0] cmt_epc, //异常返回地址
- input cmt_epc_ena, //epc使能信号
- input [`E203_XLEN-1:0] cmt_cause, //异常原因输入
- input cmt_cause_ena, //cause使能
- input cmt_status_ena, //status使能
- input cmt_instret_ena, //instret使能
- input cmt_mret_ena, //mret使能
- output[`E203_PC_SIZE-1:0] csr_epc_r, //输出epc值,异常地址
- output[`E203_PC_SIZE-1:0] csr_dpc_r, //输出dpc,debug模式的pc值
- output[`E203_XLEN-1:0] csr_mtvec_r, //输出异常模式基地址
- input clk_aon, //常开时钟信号,不会受clock gating影响
- input clk, //时钟信号
- input rst_n //复位信号
- );
复制代码E203仅支持机器模式,所以priv_mode=2’b11。接着实现mstatus的rtl代码 - wire wbck_csr_wen = csr_wr_en & csr_ena ;
- wire read_csr_ena = csr_rd_en & csr_ena ;
- wire [1:0] priv_mode = u_mode ? 2'b00 :
- s_mode ? 2'b01 :
- h_mode ? 2'b10 :
- m_mode ? 2'b11 :
- 2'b11;
- //0x000 URW ustatus User status register.
- // * Since we support the user-level interrupt, hence we need to support UIE
- //0x300 MRW mstatus Machine status register.
- wire sel_ustatus = (csr_idx == 12'h000);
- wire sel_mstatus = (csr_idx == 12'h300);
- wire rd_ustatus = sel_ustatus & csr_rd_en;
- wire rd_mstatus = sel_mstatus & csr_rd_en;
- wire wr_ustatus = sel_ustatus & csr_wr_en;
- wire wr_mstatus = sel_mstatus & csr_wr_en;
- /////////////////////////////////////////////////////////////////////
- // Note: the below implementation only apply to Machine-mode config,
- // if other mode is also supported, these logics need to be updated
- //////////////////////////
- // Implement MPIE field
- //
- wire status_mpie_r;
- // The MPIE Feilds will be updates when: //在中断发生或者中断完成,返回时候,或者直接写该寄存器时候,使能该寄存器
- wire status_mpie_ena =
- // The CSR is written by CSR instructions
- (wr_mstatus & wbck_csr_wen) |
- // The MRET instruction commited
- cmt_mret_ena |
- // The Trap is taken
- cmt_status_ena;
- wire status_mpie_nxt =
- // See Priv SPEC:
- // When a trap is taken from privilege mode y into privilege
- // mode x, xPIE is set to the value of xIE;
- // So, When the Trap is taken, the MPIE is updated with the current MIE value
- cmt_status_ena ? status_mie_r : //进入中断的时候,保存mie的值。
- // See Priv SPEC:
- // When executing an xRET instruction, supposing xPP holds the value y, xIE
- // is set to xPIE; the privilege mode is changed to y;
- // xPIE is set to 1;
- // So, When the MRET instruction commited, the MPIE is updated with 1
- cmt_mret_ena ? 1'b1 : //从中断返回时候更新为0
- // When the CSR is written by CSR instructions
- (wr_mstatus & wbck_csr_wen) ? wbck_csr_dat[7] : // MPIE is in field 7 of mstatus
- status_mpie_r; // Unchanged
- sirv_gnrl_dfflr #(1) status_mpie_dfflr (status_mpie_ena, status_mpie_nxt, status_mpie_r, clk, rst_n);
- //////////////////////////
- // Implement MIE field
- //
- // The MIE Feilds will be updates same as MPIE
- wire status_mie_ena = status_mpie_ena;
- wire status_mie_nxt =
- // See Priv SPEC:
- // When a trap is taken from privilege mode y into privilege
- // mode x, xPIE is set to the value of xIE,
- // xIE is set to 0;
- // So, When the Trap is taken, the MIE is updated with 0
- cmt_status_ena ? 1'b0 : //进入中断时候,关闭中断
- // See Priv SPEC:
- // When executing an xRET instruction, supposing xPP holds the value y, xIE
- // is set to xPIE; the privilege mode is changed to y, xPIE is set to 1;
- // So, When the MRET instruction commited, the MIE is updated with MPIE
- cmt_mret_ena ? status_mpie_r : //从中断返回时候,恢复保存在mpie中的值。
- // When the CSR is written by CSR instructions
- (wr_mstatus & wbck_csr_wen) ? wbck_csr_dat[3] : // MIE is in field 3 of mstatus
- status_mie_r; // Unchanged
- sirv_gnrl_dfflr #(1) status_mie_dfflr (status_mie_ena, status_mie_nxt, status_mie_r, clk, rst_n);
- //////////////////////////
- // Implement SD field
- //
- // See Priv SPEC:
- // The SD bit is read-only
- // And is set when either the FS or XS bits encode a Dirty
- // state (i.e., SD=((FS==11) OR (XS==11))).//因为没有浮点单元和协处理器,fs,xs域都为0
- wire [1:0] status_fs_r;
- wire [1:0] status_xs_r;
- wire status_sd_r = (status_fs_r == 2'b11) | (status_xs_r == 2'b11);
- //////////////////////////
- // Implement XS field
- //
- // See Priv SPEC:
- // XS field is read-only
- // The XS field represents a summary of all extensions' status
- // But in E200 we implement XS exactly same as FS to make it usable by software to
- // disable extended accelerators
- // If no EAI coprocessor interface configured, the XS is just hardwired to 0
- assign status_xs_r = 2'b0;
- //////////////////////////
- // Implement FS field
- //
- `ifndef E203_HAS_FPU
- // If no FPU configured, the FS is just hardwired to 0
- assign status_fs_r = 2'b0;
- `endif
- //////////////////////////
- // Pack to the full mstatus register
- //
- wire [`E203_XLEN-1:0] status_r;
- assign status_r[31] = status_sd_r; //SD
- assign status_r[30:23] = 8'b0; // Reserved
- assign status_r[22:17] = 6'b0; // TSR--MPRV
- assign status_r[16:15] = status_xs_r; // XS
- assign status_r[14:13] = status_fs_r; // FS
- assign status_r[12:11] = 2'b11; // MPP
- assign status_r[10:9] = 2'b0; // Reserved
- assign status_r[8] = 1'b0; // SPP
- assign status_r[7] = status_mpie_r; // MPIE
- assign status_r[6] = 1'b0; // Reserved
- assign status_r[5] = 1'b0; // SPIE
- assign status_r[4] = 1'b0; // UPIE
- assign status_r[3] = status_mie_r; // MIE
- assign status_r[2] = 1'b0; // Reserved
- assign status_r[1] = 1'b0; // SIE
- assign status_r[0] = 1'b0; // UIE
- wire [`E203_XLEN-1:0] csr_mstatus = status_r;
复制代码mie/mip rtl实现 - //0x004 URW uie User interrupt-enable register.
- // * Since we dont delegate interrupt to user mode, hence it is as all 0s
- //0x304 MRW mie Machine interrupt-enable register.
- wire sel_mie = (csr_idx == 12'h304);
- wire rd_mie = sel_mie & csr_rd_en;
- wire wr_mie = sel_mie & csr_wr_en;
- wire mie_ena = wr_mie & wbck_csr_wen;
- wire [`E203_XLEN-1:0] mie_r;
- wire [`E203_XLEN-1:0] mie_nxt;
- assign mie_nxt[31:12] = 20'b0;
- assign mie_nxt[11] = wbck_csr_dat[11];//MEIE
- assign mie_nxt[10:8] = 3'b0;
- assign mie_nxt[ 7] = wbck_csr_dat[ 7];//MTIE
- assign mie_nxt[6:4] = 3'b0;
- assign mie_nxt[ 3] = wbck_csr_dat[ 3];//MSIE
- assign mie_nxt[2:0] = 3'b0;
- sirv_gnrl_dfflr #(`E203_XLEN) mie_dfflr (mie_ena, mie_nxt, mie_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mie = mie_r;
- assign meie_r = csr_mie[11];
- assign mtie_r = csr_mie[ 7];
- assign msie_r = csr_mie[ 3];
- //0x044 URW uip User interrupt pending.
- // We dont support delegation scheme, so no need to support the uip
- //0x344 MRW mip Machine interrupt pending
- wire sel_mip = (csr_idx == 12'h344);
- wire rd_mip = sel_mip & csr_rd_en;
- //wire wr_mip = sel_mip & csr_wr_en;
- // The MxIP is read-only
- wire meip_r;
- wire msip_r;
- wire mtip_r;
- sirv_gnrl_dffr #(1) meip_dffr (ext_irq_r, meip_r, clk, rst_n);
- sirv_gnrl_dffr #(1) msip_dffr (sft_irq_r, msip_r, clk, rst_n);
- sirv_gnrl_dffr #(1) mtip_dffr (tmr_irq_r, mtip_r, clk, rst_n);
- wire [`E203_XLEN-1:0] ip_r;
- assign ip_r[31:12] = 20'b0;
- assign ip_r[11] = meip_r;
- assign ip_r[10:8] = 3'b0;
- assign ip_r[ 7] = mtip_r;
- assign ip_r[6:4] = 3'b0;
- assign ip_r[ 3] = msip_r;
- assign ip_r[2:0] = 3'b0;
- wire [`E203_XLEN-1:0] csr_mip = ip_r;
复制代码mtvec和mscratch rtl实现 - //0x005 URW utvec User trap handler base address.
- // We dont support user trap, so no utvec needed
- //0x305 MRW mtvec Machine trap-handler base address.
- wire sel_mtvec = (csr_idx == 12'h305);
- wire rd_mtvec = csr_rd_en & sel_mtvec;
- `ifdef E203_SUPPORT_MTVEC //{
- wire wr_mtvec = sel_mtvec & csr_wr_en;
- wire mtvec_ena = (wr_mtvec & wbck_csr_wen);
- wire [`E203_XLEN-1:0] mtvec_r;
- wire [`E203_XLEN-1:0] mtvec_nxt = wbck_csr_dat;
- sirv_gnrl_dfflr #(`E203_XLEN) mtvec_dfflr (mtvec_ena, mtvec_nxt, mtvec_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mtvec = mtvec_r;
- `else//}{
- // THe vector table base is a configurable parameter, so we dont support writeable to it
- wire [`E203_XLEN-1:0] csr_mtvec = `E203_MTVEC_TRAP_BASE;
- `endif//}
- assign csr_mtvec_r = csr_mtvec;
- //0x340 MRW mscratch
- wire sel_mscratch = (csr_idx == 12'h340);
- wire rd_mscratch = sel_mscratch & csr_rd_en;
- `ifdef E203_SUPPORT_MSCRATCH //{
- wire wr_mscratch = sel_mscratch & csr_wr_en;
- wire mscratch_ena = (wr_mscratch & wbck_csr_wen);
- wire [`E203_XLEN-1:0] mscratch_r;
- wire [`E203_XLEN-1:0] mscratch_nxt = wbck_csr_dat;
- sirv_gnrl_dfflr #(`E203_XLEN) mscratch_dfflr (mscratch_ena, mscratch_nxt, mscratch_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mscratch = mscratch_r;
- `else//}{
- wire [`E203_XLEN-1:0] csr_mscratch = `E203_XLEN'b0;
- `endif//}
复制代码mcycle/mcycleh/minstret/minstreth/counterstop/cgstop/itcmnohold/mdvnob2b等的rtl实现。 - // 0xB00 MRW mcycle
- // 0xB02 MRW minstret
- // 0xB80 MRW mcycleh
- // 0xB82 MRW minstreth
- wire sel_mcycle = (csr_idx == 12'hB00);
- wire sel_mcycleh = (csr_idx == 12'hB80);
- wire sel_minstret = (csr_idx == 12'hB02);
- wire sel_minstreth = (csr_idx == 12'hB82);
- // 0xBFF MRW counterstop
- // This register is our self-defined register to stop
- // the cycle/time/instret counters to save dynamic powers
- wire sel_counterstop = (csr_idx == 12'hBFF);// This address is not used by ISA
- // 0xBFE MRW mcgstop
- // This register is our self-defined register to disable the
- // automaticall clock gating for CPU logics for debugging purpose
- wire sel_mcgstop = (csr_idx == 12'hBFE);// This address is not used by ISA
- // 0xBFD MRW itcmnohold
- // This register is our self-defined register to disble the
- // ITCM SRAM output holdup feature, if set, then we assume
- // ITCM SRAM output cannot holdup last read value
- wire sel_itcmnohold = (csr_idx == 12'hBFD);// This address is not used by ISA
- // 0xBF0 MRW mdvnob2b
- // This register is our self-defined register to disble the
- // Mul/div back2back feature
- wire sel_mdvnob2b = (csr_idx == 12'hBF0);// This address is not used by ISA
- wire rd_mcycle = csr_rd_en & sel_mcycle ;
- wire rd_mcycleh = csr_rd_en & sel_mcycleh ;
- wire rd_minstret = csr_rd_en & sel_minstret ;
- wire rd_minstreth = csr_rd_en & sel_minstreth;
- wire rd_itcmnohold = csr_rd_en & sel_itcmnohold;
- wire rd_mdvnob2b = csr_rd_en & sel_mdvnob2b;
- wire rd_counterstop = csr_rd_en & sel_counterstop;
- wire rd_mcgstop = csr_rd_en & sel_mcgstop;
- `ifdef E203_SUPPORT_MCYCLE_MINSTRET //{
- wire wr_mcycle = csr_wr_en & sel_mcycle ;
- wire wr_mcycleh = csr_wr_en & sel_mcycleh ;
- wire wr_minstret = csr_wr_en & sel_minstret ;
- wire wr_minstreth = csr_wr_en & sel_minstreth;
- wire wr_itcmnohold = csr_wr_en & sel_itcmnohold ;
- wire wr_mdvnob2b = csr_wr_en & sel_mdvnob2b ;
- wire wr_counterstop = csr_wr_en & sel_counterstop;
- wire wr_mcgstop = csr_wr_en & sel_mcgstop ;
- wire mcycle_wr_ena = (wr_mcycle & wbck_csr_wen);
- wire mcycleh_wr_ena = (wr_mcycleh & wbck_csr_wen);
- wire minstret_wr_ena = (wr_minstret & wbck_csr_wen);
- wire minstreth_wr_ena = (wr_minstreth & wbck_csr_wen);
- wire itcmnohold_wr_ena = (wr_itcmnohold & wbck_csr_wen);
- wire mdvnob2b_wr_ena = (wr_mdvnob2b & wbck_csr_wen);
- wire counterstop_wr_ena = (wr_counterstop & wbck_csr_wen);
- wire mcgstop_wr_ena = (wr_mcgstop & wbck_csr_wen);
- wire [`E203_XLEN-1:0] mcycle_r ;
- wire [`E203_XLEN-1:0] mcycleh_r ;
- wire [`E203_XLEN-1:0] minstret_r ;
- wire [`E203_XLEN-1:0] minstreth_r;
- wire cy_stop;
- wire ir_stop;
- wire stop_cycle_in_dbg = dbg_stopcycle & dbg_mode;
- wire mcycle_ena = mcycle_wr_ena |
- ((~cy_stop) & (~stop_cycle_in_dbg) & (1'b1));
- wire mcycleh_ena = mcycleh_wr_ena |
- ((~cy_stop) & (~stop_cycle_in_dbg) & ((mcycle_r == (~(`E203_XLEN'b0)))));
- wire minstret_ena = minstret_wr_ena |
- ((~ir_stop) & (~stop_cycle_in_dbg) & (cmt_instret_ena));
- wire minstreth_ena = minstreth_wr_ena |
- ((~ir_stop) & (~stop_cycle_in_dbg) & ((cmt_instret_ena & (minstret_r == (~(`E203_XLEN'b0))))));
- //auto increment
- wire [`E203_XLEN-1:0] mcycle_nxt = mcycle_wr_ena ? wbck_csr_dat : (mcycle_r + 1'b1);
- wire [`E203_XLEN-1:0] mcycleh_nxt = mcycleh_wr_ena ? wbck_csr_dat : (mcycleh_r + 1'b1);
- wire [`E203_XLEN-1:0] minstret_nxt = minstret_wr_ena ? wbck_csr_dat : (minstret_r + 1'b1);
- wire [`E203_XLEN-1:0] minstreth_nxt = minstreth_wr_ena ? wbck_csr_dat : (minstreth_r + 1'b1);
- //We need to use the always-on clock for this counter
- sirv_gnrl_dfflr #(`E203_XLEN) mcycle_dfflr (mcycle_ena, mcycle_nxt, mcycle_r , clk_aon, rst_n);
- sirv_gnrl_dfflr #(`E203_XLEN) mcycleh_dfflr (mcycleh_ena, mcycleh_nxt, mcycleh_r , clk_aon, rst_n);
- sirv_gnrl_dfflr #(`E203_XLEN) minstret_dfflr (minstret_ena, minstret_nxt, minstret_r , clk, rst_n);
- sirv_gnrl_dfflr #(`E203_XLEN) minstreth_dfflr (minstreth_ena, minstreth_nxt, minstreth_r, clk, rst_n);
- wire [`E203_XLEN-1:0] counterstop_r;
- wire counterstop_ena = counterstop_wr_ena;
- wire [`E203_XLEN-1:0] counterstop_nxt = {29'b0,wbck_csr_dat[2:0]};// Only LSB 3bits are useful
- sirv_gnrl_dfflr #(`E203_XLEN) counterstop_dfflr (counterstop_ena, counterstop_nxt, counterstop_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mcycle = mcycle_r;
- wire [`E203_XLEN-1:0] csr_mcycleh = mcycleh_r;
- wire [`E203_XLEN-1:0] csr_minstret = minstret_r;
- wire [`E203_XLEN-1:0] csr_minstreth = minstreth_r;
- wire [`E203_XLEN-1:0] csr_counterstop = counterstop_r;
- `else//}{
- wire [`E203_XLEN-1:0] csr_mcycle = `E203_XLEN'b0;
- wire [`E203_XLEN-1:0] csr_mcycleh = `E203_XLEN'b0;
- wire [`E203_XLEN-1:0] csr_minstret = `E203_XLEN'b0;
- wire [`E203_XLEN-1:0] csr_minstreth = `E203_XLEN'b0;
- wire [`E203_XLEN-1:0] csr_counterstop = `E203_XLEN'b0;
- `endif//}
- wire [`E203_XLEN-1:0] itcmnohold_r;
- wire itcmnohold_ena = itcmnohold_wr_ena;
- wire [`E203_XLEN-1:0] itcmnohold_nxt = {31'b0,wbck_csr_dat[0]};// Only LSB 1bits are useful
- sirv_gnrl_dfflr #(`E203_XLEN) itcmnohold_dfflr (itcmnohold_ena, itcmnohold_nxt, itcmnohold_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_itcmnohold = itcmnohold_r;
- wire [`E203_XLEN-1:0] mdvnob2b_r;
- wire mdvnob2b_ena = mdvnob2b_wr_ena;
- wire [`E203_XLEN-1:0] mdvnob2b_nxt = {31'b0,wbck_csr_dat[0]};// Only LSB 1bits are useful
- sirv_gnrl_dfflr #(`E203_XLEN) mdvnob2b_dfflr (mdvnob2b_ena, mdvnob2b_nxt, mdvnob2b_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mdvnob2b = mdvnob2b_r;
- assign cy_stop = counterstop_r[0];// Stop CYCLE counter
- assign tm_stop = counterstop_r[1];// Stop TIME counter
- assign ir_stop = counterstop_r[2];// Stop INSTRET counter,instruction number counter
- assign itcm_nohold = itcmnohold_r[0];// ITCM no-hold up feature
- assign mdv_nob2b = mdvnob2b_r[0];// Mul/Div no back2back feature
- wire [`E203_XLEN-1:0] mcgstop_r;
- wire mcgstop_ena = mcgstop_wr_ena;
- wire [`E203_XLEN-1:0] mcgstop_nxt = {30'b0,wbck_csr_dat[1:0]};// Only LSB 2bits are useful
- sirv_gnrl_dfflr #(`E203_XLEN) mcgstop_dfflr (mcgstop_ena, mcgstop_nxt, mcgstop_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mcgstop = mcgstop_r;
- assign core_cgstop = mcgstop_r[0];// Stop Core clock gating
- assign tcm_cgstop = mcgstop_r[1];// Stop TCM clock gating
复制代码mepc/mcause/mbadaddr/misa等的rtl实现。 - //0x041 URW uepc User exception program counter.
- // We dont support user trap, so no uepc needed
- //0x341 MRW mepc Machine exception program counter.
- wire sel_mepc = (csr_idx == 12'h341);
- wire rd_mepc = sel_mepc & csr_rd_en;
- wire wr_mepc = sel_mepc & csr_wr_en;
- wire epc_ena = (wr_mepc & wbck_csr_wen) | cmt_epc_ena;
- wire [`E203_PC_SIZE-1:0] epc_r;
- wire [`E203_PC_SIZE-1:0] epc_nxt;
- assign epc_nxt[`E203_PC_SIZE-1:1] = cmt_epc_ena ? cmt_epc[`E203_PC_SIZE-1:1] : wbck_csr_dat[`E203_PC_SIZE-1:1];
- assign epc_nxt[0] = 1'b0;// Must not hold PC which will generate the misalign exception according to ISA
- sirv_gnrl_dfflr #(`E203_PC_SIZE) epc_dfflr (epc_ena, epc_nxt, epc_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mepc;
- wire dummy_0;
- assign {dummy_0,csr_mepc} = {{`E203_XLEN+1-`E203_PC_SIZE{1'b0}},epc_r};
- assign csr_epc_r = csr_mepc;
- //0x042 URW ucause User trap cause.
- // We dont support user trap, so no ucause needed
- //0x342 MRW mcause Machine trap cause.
- wire sel_mcause = (csr_idx == 12'h342);
- wire rd_mcause = sel_mcause & csr_rd_en;
- wire wr_mcause = sel_mcause & csr_wr_en;
- wire cause_ena = (wr_mcause & wbck_csr_wen) | cmt_cause_ena;
- wire [`E203_XLEN-1:0] cause_r;
- wire [`E203_XLEN-1:0] cause_nxt;
- assign cause_nxt[31] = cmt_cause_ena ? cmt_cause[31] : wbck_csr_dat[31];
- assign cause_nxt[30:4] = 27'b0;
- assign cause_nxt[3:0] = cmt_cause_ena ? cmt_cause[3:0] : wbck_csr_dat[3:0];
- sirv_gnrl_dfflr #(`E203_XLEN) cause_dfflr (cause_ena, cause_nxt, cause_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mcause = cause_r;
- //0x043 URW ubadaddr User bad address.
- // We dont support user trap, so no ubadaddr needed
- //0x343 MRW mbadaddr Machine bad address.
- wire sel_mbadaddr = (csr_idx == 12'h343);
- wire rd_mbadaddr = sel_mbadaddr & csr_rd_en;
- wire wr_mbadaddr = sel_mbadaddr & csr_wr_en;
- wire cmt_trap_badaddr_ena = cmt_badaddr_ena;
- wire badaddr_ena = (wr_mbadaddr & wbck_csr_wen) | cmt_trap_badaddr_ena;
- wire [`E203_ADDR_SIZE-1:0] badaddr_r;
- wire [`E203_ADDR_SIZE-1:0] badaddr_nxt;
- assign badaddr_nxt = cmt_trap_badaddr_ena ? cmt_badaddr : wbck_csr_dat[`E203_ADDR_SIZE-1:0];
- sirv_gnrl_dfflr #(`E203_ADDR_SIZE) badaddr_dfflr (badaddr_ena, badaddr_nxt, badaddr_r, clk, rst_n);
- wire [`E203_XLEN-1:0] csr_mbadaddr;
- wire dummy_1;
- assign {dummy_1,csr_mbadaddr} = {{`E203_XLEN+1-`E203_ADDR_SIZE{1'b0}},badaddr_r};
- // We dont support the delegation scheme, so no need to implement
- // delegete registers
- //0x301 MRW misa ISA and extensions
- wire sel_misa = (csr_idx == 12'h301);
- wire rd_misa = sel_misa & csr_rd_en;
- // Only implemented the M mode, IMC or EMC
- wire [`E203_XLEN-1:0] csr_misa = {
- 2'b1
- ,4'b0 //WIRI
- ,1'b0 // 25 Z Reserved
- ,1'b0 // 24 Y Reserved
- ,1'b0 // 23 X Non-standard extensions present
- ,1'b0 // 22 W Reserved
- ,1'b0 // 21 V Tentatively reserved for Vector extension 20 U User mode implemented
- ,1'b0 // 20 U User mode implemented
- ,1'b0 // 19 T Tentatively reserved for Transactional Memory extension
- ,1'b0 // 18 S Supervisor mode implemented
- ,1'b0 // 17 R Reserved
- ,1'b0 // 16 Q Quad-precision floating-point extension
- ,1'b0 // 15 P Tentatively reserved for Packed-SIMD extension
- ,1'b0 // 14 O Reserved
- ,1'b0 // 13 N User-level interrupts supported
- ,1'b1 // 12 M Integer Multiply/Divide extension
- ,1'b0 // 11 L Tentatively reserved for Decimal Floating-Point extension
- ,1'b0 // 10 K Reserved
- ,1'b0 // 9 J Reserved
- `ifdef E203_RFREG_NUM_IS_32
- ,1'b1 // 8 I RV32I/64I/128I base ISA
- `else
- ,1'b0
- `endif
- ,1'b0 // 7 H Hypervisor mode implemented
- ,1'b0 // 6 G Additional standard extensions present
- `ifndef E203_HAS_FPU//{
- ,1'b0 // 5 F Single-precision floating-point extension
- `endif//
- `ifdef E203_RFREG_NUM_IS_32
- ,1'b0 // 4 E RV32E base ISA
- `else
- ,1'b1 //
- `endif
- `ifndef E203_HAS_FPU//{
- ,1'b0 // 3 D Double-precision floating-point extension
- `endif//
- ,1'b1 // 2 C Compressed extension
- ,1'b0 // 1 B Tentatively reserved for Bit operations extension
- `ifdef E203_SUPPORT_AMO//{
- ,1'b1 // 0 A Atomic extension
- `endif//E203_SUPPORT_AMO}
- `ifndef E203_SUPPORT_AMO//{
- ,1'b0 // 0 A Atomic extension
- `endif//}
- };
- //Machine Information Registers
- //0xF11 MRO mvendorid Vendor ID.
- //0xF12 MRO marchid Architecture ID.
- //0xF13 MRO mimpid Implementation ID.
- //0xF14 MRO mhartid Hardware thread ID.
- wire [`E203_XLEN-1:0] csr_mvendorid = `E203_XLEN'h`E203_MVENDORID;
- wire [`E203_XLEN-1:0] csr_marchid = `E203_XLEN'h`E203_MARCHID ;
- wire [`E203_XLEN-1:0] csr_mimpid = `E203_XLEN'h`E203_MIMPID ;
- wire [`E203_XLEN-1:0] csr_mhartid = {{`E203_XLEN-`E203_HART_ID_W{1'b0}},core_mhartid};
- wire rd_mvendorid = csr_rd_en & (csr_idx == 12'hF11);
- wire rd_marchid = csr_rd_en & (csr_idx == 12'hF12);
- wire rd_mimpid = csr_rd_en & (csr_idx == 12'hF13);
- wire rd_mhartid = csr_rd_en & (csr_idx == 12'hF14);
- //0x7b0 Debug Control and Status
- //0x7b1 Debug PC
- //0x7b2 Debug Scratch Register
- //0x7a0 Trigger selection register
- wire sel_dcsr = (csr_idx == 12'h7b0);
- wire sel_dpc = (csr_idx == 12'h7b1);
- wire sel_dscratch = (csr_idx == 12'h7b2);
- wire rd_dcsr = dbg_mode & csr_rd_en & sel_dcsr ;
- wire rd_dpc = dbg_mode & csr_rd_en & sel_dpc ;
- wire rd_dscratch = dbg_mode & csr_rd_en & sel_dscratch;
- assign wr_dcsr_ena = dbg_mode & csr_wr_en & sel_dcsr ;
- assign wr_dpc_ena = dbg_mode & csr_wr_en & sel_dpc ;
- assign wr_dscratch_ena = dbg_mode & csr_wr_en & sel_dscratch;
- assign wr_csr_nxt = wbck_csr_dat;
- wire [`E203_XLEN-1:0] csr_dcsr = dcsr_r ;
- `ifdef E203_PC_SIZE_IS_16
- wire [`E203_XLEN-1:0] csr_dpc = {{`E203_XLEN-`E203_PC_SIZE{1'b0}},dpc_r};
- `endif
- `ifdef E203_PC_SIZE_IS_24
- wire [`E203_XLEN-1:0] csr_dpc = {{`E203_XLEN-`E203_PC_SIZE{1'b0}},dpc_r};
- `endif
- `ifdef E203_PC_SIZE_IS_32
- wire [`E203_XLEN-1:0] csr_dpc = dpc_r ;
- `endif
- wire [`E203_XLEN-1:0] csr_dscratch = dscratch_r;
- assign csr_dpc_r = dpc_r;
复制代码下面是我的写的一个testbench, - `include "e203_defines.v"
- module e203_exu_csr_tb;
- reg csr_ena; //csr readwrite enable signal from alu
- reg csr_wr_en; //csr write enable
- reg csr_rd_en; //csr read enable
- reg [11:0] csr_idx;//csr address index
- wire tm_stop;
- wire core_cgstop;
- wire tcm_cgstop;
- wire itcm_nohold;
- wire mdv_nob2b;
- wire [`E203_XLEN-1:0] read_csr_dat;
- reg [`E203_XLEN-1:0] wbck_csr_dat;
- reg [`E203_HART_ID_W-1:0] core_mhartid;
- reg ext_irq_r;
- reg sft_irq_r;
- reg tmr_irq_r;
- wire status_mie_r;
- wire mtie_r;
- wire msie_r;
- wire meie_r;
- wire wr_dcsr_ena ;
- wire wr_dpc_ena ;
- wire wr_dscratch_ena;
- reg [`E203_XLEN-1:0] dcsr_r ;
- reg [`E203_PC_SIZE-1:0] dpc_r ;
- reg [`E203_XLEN-1:0] dscratch_r;
- wire [`E203_XLEN-1:0] wr_csr_nxt ;
- reg dbg_mode;
- reg dbg_stopcycle;
- wire u_mode;
- wire s_mode;
- wire h_mode;
- wire m_mode;
- reg [`E203_ADDR_SIZE-1:0] cmt_badaddr;
- reg cmt_badaddr_ena;
- reg [`E203_PC_SIZE-1:0] cmt_epc;
- reg cmt_epc_ena;
- reg [`E203_XLEN-1:0] cmt_cause;
- reg cmt_cause_ena;
- reg cmt_status_ena;
- reg cmt_instret_ena;
- reg cmt_mret_ena;
- wire[`E203_PC_SIZE-1:0] csr_epc_r;
- wire[`E203_PC_SIZE-1:0] csr_dpc_r;
- wire[`E203_XLEN-1:0] csr_mtvec_r;
- reg clk=0;
- reg rst_n;
- e203_exu_csr mycsr(
- .csr_ena(csr_ena),
- .csr_wr_en(csr_wr_en),
- .csr_rd_en(csr_rd_en),
- .csr_idx(csr_idx),
- .tm_stop(tm_stop),
- .core_cgstop(core_cgstop),
- .tcm_cgstop(tcm_cgstop),
- .itcm_nohold(itcm_nohold),
- .mdv_nob2b(mdv_nob2b),
- .read_csr_dat(read_csr_dat),
- .wbck_csr_dat(wbck_csr_dat),
- .core_mhartid(core_mhartid),
- .ext_irq_r(ext_irq_r),
- .sft_irq_r(sft_irq_r),
- .tmr_irq_r(tmr_irq_r),
- .status_mie_r(status_mie_r),
- .mtie_r(mtie_r),
- .msie_r(msie_r),
- .meie_r(meie_r),
- .wr_dcsr_ena(wr_dcsr_ena),
- .wr_dpc_ena(wr_dpc_ena),
- .wr_dscratch_ena(wr_dscratch_ena),
- .dcsr_r(dcsr_r),
- .dpc_r(dpc_r),
- .dscratch_r(dscratch_r),
- .wr_csr_nxt(wr_csr_nxt),
- .dbg_mode(dbg_mode),
- .dbg_stopcycle(dbg_stopcycle),
- .u_mode(u_mode),
- .s_mode(s_mode),
- .h_mode(h_mode),
- .m_mode(m_mode),
- .cmt_badaddr(cmt_badaddr),
- .cmt_badaddr_ena(cmt_badaddr_ena),
- .cmt_epc(cmt_epc),
- .cmt_epc_ena(cmt_epc_ena),
- .cmt_cause(cmt_cause),
- .cmt_cause_ena(cmt_cause_ena),
- .cmt_status_ena(cmt_status_ena),
- .cmt_instret_ena(cmt_instret_ena),
- .cmt_mret_ena(cmt_mret_ena),
- .csr_epc_r(csr_epc_r),
- .csr_dpc_r(csr_dpc_r),
- .csr_mtvec_r(csr_mtvec_r),
- .clk_aon(clk),
- .clk(clk),
- .rst_n(rst_n)
- );
- always #10 clk=~clk;
- initial
- begin
- rst_n = 1'b1;
- #20
- rst_n= 1'b0;
- #20
- rst_n=1'b1;
- csr_ena = 1'b1;
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- csr_idx = 11'h300; //mstatus
- wbck_csr_dat = 32'h0001f888;
- core_mhartid = `E203_HART_ID_W'h0;
- ext_irq_r = 1'b0;
- sft_irq_r = 1'b0;
- tmr_irq_r = 1'b0;
- dcsr_r = `E203_XLEN'h5;
- dpc_r = `E203_PC_SIZE'h5;
- dscratch_r = `E203_XLEN'h5;
- dbg_mode = 1'b0;
- dbg_stopcycle= 1'b0;
- cmt_badaddr=`E203_ADDR_SIZE'h4;
- cmt_badaddr_ena = 1'b0;
- cmt_epc=`E203_PC_SIZE'h4;
- cmt_epc_ena = 1'b0;
- cmt_cause=`E203_XLEN'h4;
- cmt_cause_ena = 1'b0;
- cmt_status_ena = 1'b0;
- cmt_instret_ena = 1'b0;
- cmt_mret_ena = 1'b0;
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h80;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h888;
- csr_idx = 12'h304; //mie
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h800;
- csr_idx = 12'h344; //mip
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'hff;
- csr_idx = 12'h305; //mtvec
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'hff00;
- csr_idx = 12'h340; //mscratch
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h7;
- csr_idx = 12'hbff; //counterstop
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h3;
- csr_idx = 12'hbfe; //mcgstop
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h1;
- csr_idx = 12'hbfd; //itcmnohold
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h1;
- csr_idx = 12'hbf0; //mdvnob2b
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'h1;
- csr_idx = 12'h341; //mepc
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'haa;
- csr_idx = 12'h342; //mcasue
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b1;
- csr_rd_en = 1'b0;
- wbck_csr_dat = 32'hffff;
- csr_idx = 12'h343; //mbadaddr/mtval
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- csr_idx = 12'h301; //misa
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- csr_idx = 12'hf11; //mvendorid
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- csr_idx = 12'hf12; //marchid
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- csr_idx = 12'hf13; //mimpid
- #20
- csr_wr_en = 1'b0;
- csr_rd_en = 1'b1;
- csr_idx = 12'hf14; //mhartid
- #100
- $finish;
- end
- //initial
- // $monitor($time,,,"clk=%b,i_instr=0x%h,i_pc=%h",clk,i_instr,i_pc);
- initial
- begin
- //$dumpfile("dump.vcd");
- //$dumpvars;
- $fsdbDumpfile("dump.fsdb");
- $fsdbDumpvars("+all");
- end
- endmodule
复制代码 Makefile- # VCS flags, if want to use dump fsdb in verilog file, need to add args -fsdb, otherwise will be compiled fail
- VCS_FLAGS = -sverilog -full64 -fsdb -debug_all +v2k -timescale=1ns/1ns +define+DISABLE_SV_ASSERTION
- # Source files
- SRC_FILES = e203_exu_csr.v \
- sirv_gnrl_dffs.v \
- sirv_gnrl_xchecker.v \
- e203_exu_csr_tb.v \
- # Source directories
- INCDIR = +incdir+./
- all:
- vcs $(VCS_FLAGS) $(INCDIR) $(SRC_FILES)
- clean:
- rm -rf ./csrc *.daidir ./csrc *.log *.vpd *.vdb simv* *.key *race.out* *vcd *fsdb
- debug:
- verdi -sv -ssf dump.fsdb -f verdi.f &
复制代码 完
|